LES FLUCTUATIONS D'ECHANTILLONNAGE

1. INTRODUCTION

Etudier la variabilité des résultats partiels observés sur un échantillon par rapport au résultats globaux de la population totale

2. CARACTERE QUALITATIF 2.1. POSITION DU PROBLEME



P Connue ?

Quelle est la valeur que peut prendre P_0 ?

2.2. RAPPELS

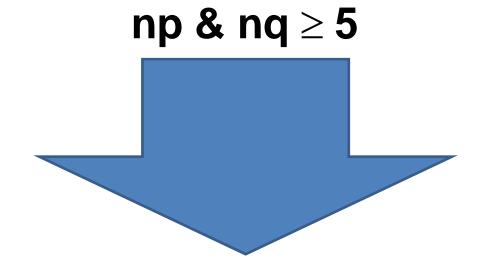
B (n,P)

x : Nombre de sujets présentant la modalité

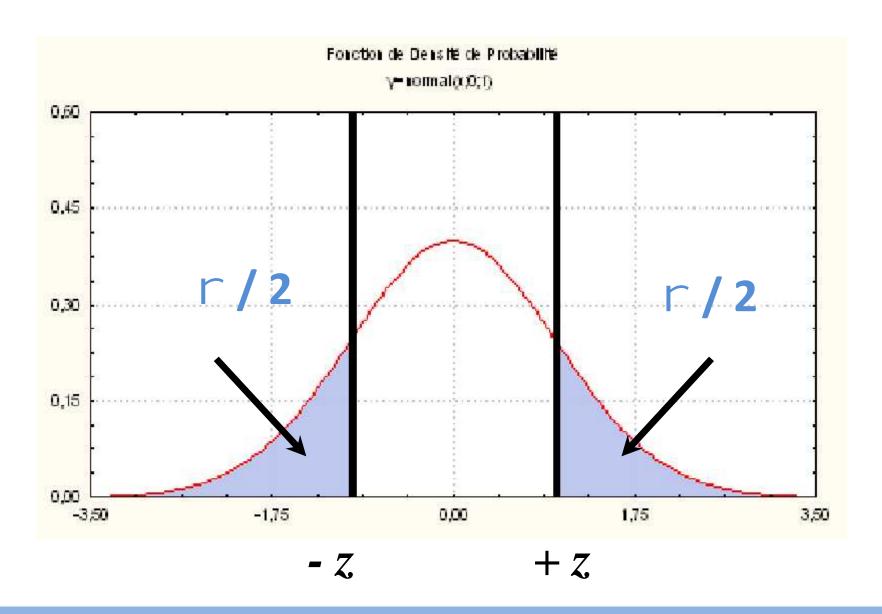
p = x/n

Plusieurs tirages : p suit une loi binomiale de :

- Moyenne p (np)
- Variance pq/n (npq)
- Ecart-type : $\sqrt{pq/n}$ (\sqrt{npq})



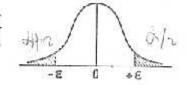
Approximation par la loi normale



r = Probabilité d'avoir des valeurs à l'extérieur d'un intervalle (- z , + z)

Table de l'écart-réduit (loi normale) (*)

La table donne la probabilité α pour que l'écartréduit égale ou dépasse, en valeur absolue, une valeur donnée ε , c'est-à-thre la probabilité extérieure à l'intervalle $(-\varepsilon, +\varepsilon)$.



α	0,00	0,01	0,02	0,03	0,04	0,05	0,05	0,07	0,08	0,09
0,00	DO.	2,576	2,326	2,170	2,054	1,960	1,881	1,812	1,751	1,695
0,10	1,645	1,598	1,555	1,514	1,476	1,440	1,405	1,372	1,341	1,311
0,20	1,282	1,254	1,227	1,200	1,175	1,150	1,126	1,103	1,080	1,058
0,30	1,036	1,015	0,994	0.974	0,954	0,935	0,915	0,896	0,878	0,860
0,40	0,842	0,824	0,806	0.789	0,772	0.755	0,739	0,722	0,706	0,690
0,50	0,674	0,659	0.643	0,628	0,613	0.598	0.583	0,568	0,553	0.539
0,60	0,524	0,510	0.496	0,482	0,468	0.454	0,440	0,426	0,412	0.399
0,70	0,385	0,372	0,358	0,345	0,332	0.319	0,305	0,292	0,279	0,266
0,80	0,253	0,240	0,228	0,215	0,202	0,189	0,176	0,164	0,151	0,138
0,90	0,126	0,113	0,100	0,088	0,075	0,063	0,050	0,038	0,025	0,013

La probabilité α s'obtient par addition des nombres inscrits en marge.

Exemple: Pour t = 1,960 la probabilité est $\alpha = 0,00 - 0,05 = 0,05$.

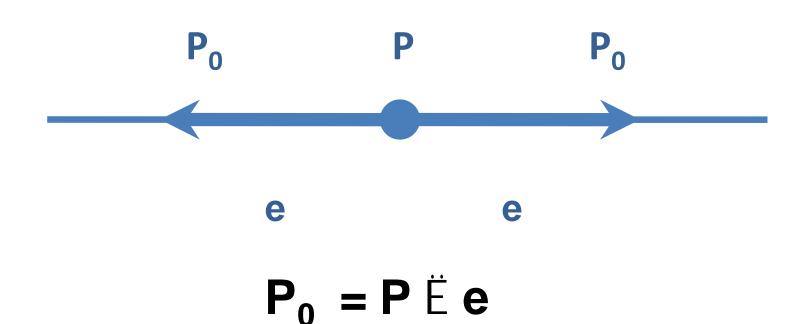
Table pour les petites valeurs de la probabilité

X	100,0	0.000 1	0,000.01	100 000,0	0,000 000 1	0,000 000 01	0,000 000 001
ε	3,29053	3,89059	4,41717	4,89164	5,32672	5,73073	6,10941

^(*) D'après Fisher et Yates, Statistical tables for biological, agricultural, and medical research (Oliver and Boyd, Edinburgh) avec l'aimable autorisation des auteurs et des éditeurs.

2.3. HYPOTHESE

- ➤ P₀ proche de P
- $\triangleright P_0$ est dans un intervalle autour de P



2.4. INTERVALLE DE PARI

Intervalle de pari allant de P – e à P + e Intervalle de pari= 2 e Intervalle de pari associé à un risque d'erreur α Risque d'erreur α associé à l'écart réduit z

$$e = z s$$
 $e = z \delta pq / n$
 $P_0 = P \ddot{E} e$
 $P_0 = P \ddot{E} z s$
 $P_0 = P \ddot{E} z \delta pq / n$

Risque d'erreur α inversement proportionnel à la largeur de l'intervalle de pari

2.5. APPLICATION

Fréquence de sujets du groupe sanguin O dans une population = 40 % Echantillon de 250 sujets

Quelle est cette fréquence au sein de l'échantillon ?

2.5. 1. Les données :

$$P = 40 \% = 0.4$$

 $Q = 1 - 0.4 = 0.6$
 $n = 250$
 $P_0 = ?$

2.5. 2. Position du problème :

Il s'agit d'un problème de fluctuation d'echantillonnage d'un pourcentage

$$P_0 = P \stackrel{.}{\vdash} e$$

$$P_0 = P \stackrel{.}{\vdash} z s$$

$$P_0 = P \stackrel{.}{\vdash} z \stackrel{.}{\circ} pq /n$$

2.5. 3. Vérification des conditions d'application :

np et nq
$$\geq$$
 5
np = 250 x 0,4 = 100
nq = 250 x 0,6 = 150

Les conditions d'application sont réunies

2.5. 4. Application:

➤ Risque d'erreur $\Gamma = 5 \% (0,05)$ $\Longrightarrow z = 1,96$ $P_0 = P \stackrel{\vdash}{\vdash} e$ e = z s $s = \delta pq / n = \delta 0,4 \times 0,6 / 250 = 0,031$ $e = 1,96 \times 0,031 = 0,06$ $P_0 = 0,4 \stackrel{\vdash}{\vdash} 0,06$

2.5. 5. Résultat :

$$P_0 = 0.4 \stackrel{?}{=} 0.06$$

 $P_0 = 0.34 - 0.46$

2.5. 6. Conclusion :

La fréquence de sujets du groupe sanguin O au sein de l'échantillon varie entre 34 % et 46 % (p = 0,05)

2.6. UTILISATION DES FREQUENCES ABSOLUES

```
e = z s

s = \eth npq = \eth 250 \times 0.4 \times 0.6 = 7.7

e = 1.96 \times 7.7 = 15

X_0 = 100 \to 15

X_0 = 85 - 115
```

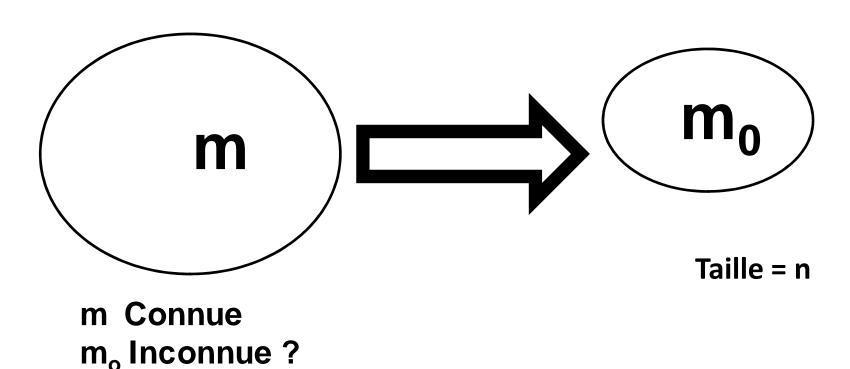
2.7. VARIATION EN FONCTION DU RISQUE D'ERREUR

P = 40 %

n = 250

r	z	s = ðpq/n	e = z s	Intervalle de pari
0,001	3,29		0,1 (10 %)	30 % - 50 %
0,01	2,57		0,08 (8 %)	32 % - 48 %
0,05	1,96	0,031	0,06 (6 %)	34 % - 46 %
0,2	1,28		0,04 (4 %)	36 % - 44 %
0,5	0,67		0,02 (2 %)	38 % - 42 %

3. CARACTERE QUANTITATIF 3.1. POSITION DU PROBLEME



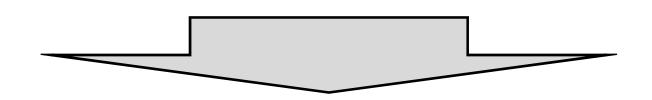
Quelle est la valeur que peut prendre m₀ ?

3.2. RAPPELS

m : Moyenne de la variable $x : \ddot{y}x_i/n$

s² : Variance de la variable x : $\ddot{y}(x_i - m)^2/n$

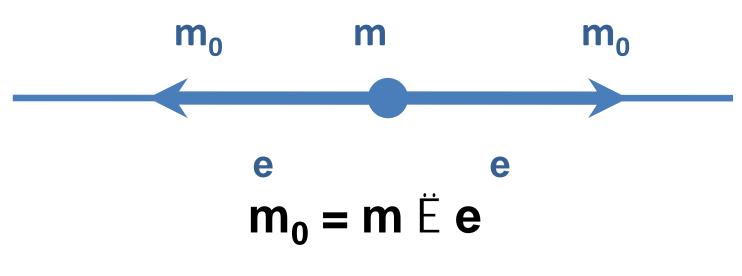
s : Ecart-type de la variable x : $\eth \ddot{y}(x_i - m)^2/n$



Variance de la moyenne m = s^2/n Ecart-type de la moyenne m = $s/\eth n$

3.3. HYPOTHESE

- > m₀ proche de m
- \succ m₀ est dans un intervalle autour de m



Conditions d'application:

- ☐ Loi normale
- \Box Effectif \geq 30

3.4. INTERVALLE DE PARI

Intervalle de pari allant de m – e à m + e Intervalle de par = 2 e Intervalle de pari associé à un risque d'erreur α Risque d'erreur α associé à l'écart réduit z

$$e = z s / \delta n$$
 $m_0 = m \ddot{E} e$
 $m_0 = m \ddot{E} z s / \delta n$

Pour les fluctuations de la variable x:

$$e = z s$$

$$x_i = m \stackrel{.}{\vdash} e$$

$$x_i = m \stackrel{.}{\vdash} z s$$

Risque d'erreur α inversement proportionnel à la largeur de l'intervalle de pari

3.5. APPLICATION

La glycémie moyenne d'une population est estimée à 0,95 g/l avec une variance de 0,09 $\rm g^2/l^2$

Echantillon de 350 sujets

Quelle est la glycémie moyenne au sein de l'échantillon?

3.5. 1. Les données :

```
m = 0,95 g/l

s^2 = 0,09 g^2/l^2

s = \sqrt{0,09} = 0,3 g/L

n = 350

m_0 = ?
```

3.5. 2. Position du problème :

Il s'agit d'un problème de fluctuation d'echantillonnage d'une moyenne

$$m_0 = m \stackrel{.}{\mathsf{E}} e$$
 $m_0 = m \stackrel{.}{\mathsf{E}} z s / \eth n$

3.5. 3. Vérification des conditions d'application :

- La glycémie est une variable suivant une loi normale
- n = 350 > 30

Les conditions d'application sont réunies

3.5. 4. Application:

➤ Risque d'erreur $\Gamma = 5 \% (0,05)$ $\Longrightarrow z = 1,96$ $m_0 = m \ \Box \ e$ $e = z \ s/\eth n$ $s = 0,3/\eth 350 = 0,016$ $e = 1,96 \times 0,016 = 0,031$ $m_0 = 0,95 \ \Box \ 0,03$

3.5. 5. Résultat :

$$m_0 = 0.95 \ \ddot{\mathbb{E}} \ 0.03$$

 $m_0 = 0.92 - 0.98$

3.5. 6. Conclusion:

La glycémie moyenne au sein de l'échantillon varie entre 0,92 et 0,98 g/l (Γ = 0,05)

3.5.7. Fluctuation de la variable:

ightharpoonup Risque d'erreur ho = 5 % (0,05) ightharpoonup z = 1,96

$$x_i = m \stackrel{.}{\vdash} e$$
 $e = z s$
 $e = 1,96 \times 0,3 = 0,6$
 $x_i = 0,95 \stackrel{.}{\vdash} 0,6$

Pour 95 % des sujets de l'échantillon la glycémie est comprise entre 0,35 et 1,55 g/l